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Motivation
• Academia has lacked process design kits (PDK), cell libraries, and 

design flows for advanced technology nodes
• ASAP7: A finFET based 7 nm (N7) predictive PDK for academic use

– Developed by ASU in 2015-2016 with ARM Research
– Long lived: N7 was not yet shipping

• Foundry agnostic—fully predictive, so no issues with foundries
– Realistic design rules

• Special SRAM array rules
– Transistor models with temperature and corner behavior 
– Full physical verification (DRC, LVS, Parasitic Extraction)
– Standard Cell Library

• Collaterals support widely used commercial Cadence CAD tools
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Electrical Scaling Assumptions
• Models consistent with 

scaling trends, ITRS
• Four Vt
• Three corners (TT, SS, FF)
• SRAM device → no LDD

– Longer channel, low leakage
• 0.7 V nominal VDD
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NMOS typical corner parameters (per μm) at 25ºC
Parameter SRAM RVT LVT SLVT
Idsat (μA) 1058 1402 1674 1881
Ioff (nA) 0.1 1 10 100
Vtsat (V) 0.25 0.17 0.10 0.04
Vtlin (V) 0.27 0.19 0.12 0.06
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Electrical Scaling Assumptions
• Better DIBL, near ideal SS 

with FinFET
• 54 nm CPP and 21 nm Lg

– Enable low SS and DIBL 
assumptions

– Aggressive scaling can cause 
poor SS and DIBL 

• N:P ratio ≈ 1:0.9
• Some literature shows IDSAT(P) > 

IDSAT(N) [S. Yang et al., Symp. VLSIT, 2017]
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NMOS typical corner parameters (per μm) at 25ºC
Parameter SRAM RVT LVT SLVT
SS (mV/decade) 62.44 63.03 62.90 63.33
DIBL (mV/V) 19.23 21.31 22.32 22.55
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P:N Ratio
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• Optimal fan-up at each 
inversion 
– FO4 (2 × Ieff_PMOS ≈ Ieff_NMOS)
– FO6 (Ieff_PMOS ≈ Ieff_NMOS)

Standard LE finFET case

Standard LE finFET case

x4
=12C

x6
=12C

x4
=16C

x5
=15C

NAND ≈ NOR
NOR better in future?

Equal is electrically optimal
Stay there regardless? 

Balanced: No need for 
separate balanced P:N clock 
cells



Lithography Assumptions

• EUV lithography for critical layers
– ࢂࢁࡱࢎࢉ࢚࢏ࡼ =  ૛× ࢑૚ ࡭ࡺࣅ = ૛×૙. ૝ ૚૜.૞૙.૜૜ ≈૜૛ 36 → ࢓࢔ nm for bi-directional (2-D) M1 routing 

Matches subsequent foundry demonstration [R-H. Kim, SPIE, 2016]
• Conventional 2-D M1 standard cell layouts → Easier classroom use

• Multi-patterning assumption for non-EUV layers
– Self-aligned quadruple patterning (SAQP), Self-aligned double patterning (SADP)
– Litho-etch litho-etch (LELE)

• 193i/ArFi single exposure pitch ≈ 80 nm
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[G. Dicker et al., Proc. SPIE, 2015]



Cell Level Design Technology Co-optimization
• Photolithography 

choice affects 
cost, variability, 
and design 
complexity

• 111 6-T SRAM cell
• Layout and DRC 

rules required 
extensive DTCO
– Avoid TDDB 

between middle of 
line (MOL) metals 
accounting for CDU 
and misalignment
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Fin Scaling Assumptions
• Pitch scaling

– 0.8× → 27 nm
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Fin

27 nm



Fin Scaling Assumptions
• Pitch scaling

– 0.8× → 27 nm
• Thickness reduction 

– 0.5 nm/node since 
N22 → 6.5 nm (7 nm 
drawn)
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Fin

7 nm

27 nm



Fin Scaling Assumptions
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Fin

Mandrel

Spacer 1 (mandrel sidewalls)

Spacer 2 (spacer 1 sidewalls)
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S2S2

S1
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M7 nm
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• Pitch scaling
– 0.8× → 27 nm

• Thickness reduction 
– 0.5 nm/node since 

N22 → 6.5 nm (7 nm 
drawn)

• SAQP



Gate Scaling Assumptions
• Pitch scaling

– N14-N10 → 0.85×
– N10-N7 → 0.9×
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Fin Gate

54 nm



Gate Scaling Assumptions
• Pitch scaling

– N14-N10 → 0.85×
– N10-N7 → 0.9×

• Gate length (Lg)
– 3 nm and 2 nm 

reduction since N14 → 
21 nm (20 nm drawn)

• SADP
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Fin Gate

54 nm

20 nm



Mx Patterning Assumptions
• Mx (1× metal) layers

– M1-M3
• Pitch scaling

– 0.7× since N16/14 → 32 nm 
pitch

• SAQP or EUVL?
– SAQP → costly and complex
– EUVL assumption

• Difficult 2-D routing at 
32 nm pitch
– Mx Pitch relaxed to 36 nm
– Other metal layer (1.5×, 

2×, and 2.5×) pitch values 
are relative to 32 nm pitch
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36 nm

Fin Gate M2

18 nm



Gear Ratio and Cell Height
• Standard cell height 

selection is 
application specific
– Related to fins/gate, 

i.e. drive strength
• Gear ratio: fin-to-

metal pitch ratio
– Cell height needs to 

be integer # of fins 
and (mostly) an 
integer # of metals 
accessing the cell 
pins (e.g. M2)
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• 12 fin pitches, 9 M2 tracks
• Easy intra-cell routing, rich 

library
• Wasteful for density

• 10 fin pitches, 7.5 M2 
tracks

• Rich library without 
overly difficult routing 
or poor density

• 8 fin pitches, 6 M2 tracks
• Difficult intra-cell 

routing, diminished 
library richness

• Limited pin access

270 nm (7.5 T)

Fin Gate M2

324 nm (9 T)

36 nm

27 nm

216 nm (6 T)

Fin (excised)



Gear Ratio and Cell Height
• Standard cell height 

selection is 
application specific
– Related to fins/gate, 

i.e. drive strength
• Gear ratio: fin-to-

metal pitch ratio
– Cell height needs to 

be integer # of fins 
and (mostly) an 
integer # of metals 
accessing the cell 
pins (e.g. M2)
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270 nm (7.5 T)

Fin Gate M2

324 nm (9 T)

36 nm

27 nm

216 nm (6 T)

Fin (excised)

• 12 fin pitches, 9 M2 tracks
• Easy intra-cell routing, rich 

library
• Wasteful for density

• 10 fin pitches, 7.5 M2 
tracks

• Rich library without 
overly difficult routing 
or poor density

• Allows wide M2 power 
rails

• 8 fin pitches, 6 M2 tracks
• Difficult intra-cell 

routing, diminished 
library richness

• Limited pin access



FEOL and MOL Cross Sections
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• Source-drain trench (SDT)
– Connects raised source-drain 

(SD) to MOL
– Self-aligned to gate spacers

• LISD 
– Connects SD to M1 thru V0

• LIG
– Connects Gate to M1 thru V0

GATE

LIGPMD3

PMD2

PMD1

PMD0

PMD3

PMD2

PMD1

PMD0

LISD LISD

SDT SDT

GATE

finSD SD

SP
AC

ER

[R. Xie, et al., IEDM 2016]
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SDT
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Standard Cell Architecture and Cross-section
• Cell architecture

– 7.5 M2 track height
• Provides good gear ratio with 

fin, poly, and M2 pitch

18

Fin (pre-cut)

Cell 
Boundary
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Standard Cell Architecture and Cross-section
• Cell architecture

– 7.5 M2 track height
• Provides good gear ratio with 

fin, poly, and M2 pitch
– Adjacent NAND3 and inverter 

FEOL and MOL show the double 
diffusion break (DDB)

19

Fin (pre-cut)

Cell 
Boundary

Active (drawn)
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Standard Cell Architecture and Cross-section
• Cell architecture

– 7.5 M2 track height
• Provides good gear ratio with 

fin, poly, and M2 pitch
– Adjacent NAND3 and inverter 

FEOL and MOL show the double 
diffusion break (DDB)

– Drawing is not WSYWIG—the 
fins extend to ½ the gate 
horizontally past drawn active
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Fin (pre-cut)

Cell 
Boundary

Active (actual fin 
block mask)

Active (drawn)
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Standard Cell Architecture and Cross-section
• Cell architecture

– 7.5 M2 track height
• Provides good gear ratio with 

fin, poly, and M2 pitch
– Adjacent NAND3 and inverter 

FEOL and MOL show the double 
diffusion break (DDB)

– Drawing is not WSYWIG—the 
fins extend to ½ the gate 
horizontally past drawn active

• DDB needed since the 32 nm 
node, depending on foundry
– Design rules check for connectivity 
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Standard Cell Architecture and Cross-section
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Standard Cell Architecture and Cross-section
• Cell architecture

– 7.5 M2 track height
• Provides good gear ratio with 

fin, poly, and M2 pitch
– Adjacent NAND3 and inverter 

FEOL and MOL show the double 
diffusion break (DDB)

– Drawing is not WSYWIG—the 
fins extend to ½ the gate 
horizontally past drawn active

• DDB needed since the 32 nm 
node, depending on foundry
– Design rules check for connectivity 

26

Gate (post-cut)

Fin (post-cut)

LISD

Active (actual fin 
block mask)

LIG

Active (drawn)

Fin (excised)

V0
Cell 
Boundary

Di
ffu

sio
n 

Br
ea

k

ICCAD 2017 Embedded Tutorial ASAP7



Standard Cell Architecture and Cross-section
• Cell architecture

– 7.5 M2 track height
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diffusion break (DDB)

– Drawing is not WSYWIG—the 
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Standard Cell Architecture and Cross-section
• Cell architecture
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Standard Cell Architecture and Cross-section
• Cell architecture

– 7.5 M2 track height
• Provides good gear ratio with 

fin, poly, and M2 pitch
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Standard Cell M1 Template
• M1 template enables rapid cell 

library development
– Larger M1 spacing at the center

• Better pin access through M1 
extension past M2 tracks

• C-shaped M1 pins 
– Avoid large tip-to-side design rules
– Maximize pin access
– No longer necessary on all pins 
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Standard Cells: Latch

32

• This demonstrates 
a crossover 
– Note single diffusion 

breaks (SBDs)
– Horizontal M2 can 

only support limited 
tracks

• Intel, Samsung 
support SDBs (no 
DDBs) at N10/N7 
[EETimes]
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Self-aligned Via Merging

33

• Via merging is very helpful 
in standard cells at V0

• Maximizes access to I/O pins
– Allows adjacent vias in 

routing

LISD
M1

V0
LIG

V0 SAV mask

d

d

≡
y

y

≡
y

y
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Cell Architecture Impact on Library Richness

34

• Cell height limits the available cells
– Horizontal Mx can only support limited tracks

• Power rails use one track
• 1-2 needed for gate contacts
• 1-2 for output node

– 7 (or 7.5) track has 6 internal tracks, 6 track has 5

[C. Bittlestone, et al., 
IEDM short course 2010]

• Most efficient cells fit in 7.5 track 
cells
– All 3 stack except NAND/NOR

• NAND/NOR up to 5 stack
• No diffusion breaks

• ~190 cells per Vt with drive 
differences
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Fin Cut Implications and Dummy Poly

• Fin block/cut mask can create sharp edges 
– High charge density/electric field → Severe for TDDB

• Cutting the dummy poly avoids shorts in DDBs
– Improves LIG routing 
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APR Collaterals
• Cadence Innovus collaterals developed at ASU
• Cell library includes GDS, LEF, LIB, QRC techfile, CDL

– All collateral scaled by 4× to use standard academic licensing
– 7×7 LIB look-up tables centered at FO6 capacitance/slew rates 
– LIBs for SS, TT, FF corners at 0.63 , 0.7, and 0.77 V, respectively
– Separate library for each of the four Vt

• Synopsys ICC collaterals developed at Harvey Mudd
– Not included as part of the library as yet
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Cell Library Description

• Combinational logic cells, scan and non-scan flip-flops,  
latches, and integrated clock gaters

• Inverter and buffer strength up to 13× and 24×, respectively
• Inefficient AOI, OAI, AO, OA layouts excluded
• Drive to area optimized instead of balanced rise/fall times

• But cells for clock tree synthesis must be carefully selected
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NOR2x1 DECAPx4 DECAPx1 Tapcell Filler



SADP Design Rule Development

• Color agnostic SADP design rules for 48 nm/64 nm pitch metals
• Restrictive design rules for correct-by-construction topologies

– Validated by developing color and mask decomposition Calibre decks 
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[Vashishtha, et al., Proc. ISQED, 2017]



Scaled LEF and QRC Techfile
• Special APR tool license required 

for sub-20 nm dimensions
• Workaround:

– Use 4× scaled LEFs and QRC techfile
(calibrated to Calibre PEX) during APR

– Scale back the design to original 
dimensions when importing into OA 
environment
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97.8% correlation (capacitance) 
99.1% correlation (resistance)



APR Study (Small Block)
• Level 2 cache error detection and 

correction (EDAC) block providing 
Hamming ECC for a 128-bit memory 
word
– APR flow debug vehicle

• Validated on single, mixed Vth flows, 
multi-corner optimization

• 22 µm × 22 µm 
• 535 top-level IO pins
• ~4k cell instances~90% cell area 

utilization achieved
• >5 GHz fclk

– 6 GHz with useful skew (TT, 250 C)
• SLVT cell usage dominates
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APR Study (Large Block)
• Triple modular redundant advanced 

encryption standard (AES) engine 
with fully unrolled 14 stage 
pipelines

• 1596 top-level IO pins
• Three independent clock domains
• 250 µm × 250 µm 
• ~350k cell instances
• Tclk = 1 ns (SS)
• Tclk = 520 ps (TT, 250 C)

– 38% SLVT cells
– 24% SRAM Vth cells for low leakage on 

non-critical paths
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Memory Array
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• 8kB array shown here with 128 
cells per bit-line (BL)
– 64-bit words, 84.2% array efficiency
– Control logic APRed using cell 

library 
– Custom decoder at SRAM pitch for 

high density 
– Suitable for circuit and 

architectural level studies 
• Memory release pending

[Vashishtha, et al., Proc. ISCAS, 2017]



APR Study (Microprocessor)
• MIPS M14k

– To test SRAM integration
• 215 µm × 80 µm; ~50k cell instances; ~1GHz fclk
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APR Study (Microprocessor)
• MIPS M14k

– To test SRAM integration
• 215 µm × 80 µm; ~50k cell instances; ~1GHz fclk
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Lines and Cuts BEOL Electrical Impact
• Dummies inserted post-APR using Calibre DRC flows
• PEX run on the pre-post fill—timing analysis using Primetime

– 375k cells, 72.3% area utilization, 6 metals @ 36 nm pitch
– Cuts not aligned

• So results are slightly optimistic—no added stubs on routes

[Vashishtha, et al., Proc. SPIE DTCO, 2017]

Net (only) capacitance 
increases 2x to 3x



SAV in Routing and Power
• SAVs are same width as upper 

metal
– Rectangular, rather than square vias

due to dissimilar consecutive layer 
widths

• Wide vias are specified in the 
technology LEF for APR

• Power rail outer edges coincident 
with signal on the outer tracks
– Should also respect SADP coloring 

scheme to prevent odd-cycle conflicts
• Power rails widths can only be 3, 5, 7, or 

9 tracks
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ASAP7: Standard Cell Metals: 1-D Assumptions

47

• Cells are really not that different for 1-D
– We convert between styles for experiments

• 6-track 1-D horizontal M1
• 2 fins for NMOS/PMOS
• Latch uses all M1 tracks
• M1 tracks left for routing 

use
– All filled for lines/cuts 

metallization scheme

• 7.5 track cell height
• 3 fins for NMOS/PMOS
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ASAP7 FinFET Device Simulation
• Done after SPICE model development

– Good correlation between electrical 
performance results and assumptions

– Sentaurus device editor used for simulations
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ASAP5 Nanowire Device Simulation
• Transistor models based on device simulations
• Calibrated to ASAP7 FinFETs
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ASAP7 PDK Use in Courses
• Early testing in the fall 2015-2017 EEE625 Advanced VLSI 

course
– Students here contributed to memory designs
– 6-T, 8-T, 10-T cell based embedded memories have been developed

• Used for the EEE525 VLSI courses since 2016 
• We are interested in knowing if you are using it in your course
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Design Rule Manual
• Design rules fully documented with PDK

– Includes examples of allowed and not allowed structures
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Rule Rule Type Description Operator Values Units
M4.W.1 Width Minimum vertical width of M4 ≥ 24 nm
M4.W.2 Width Maximum vertical width of M4 ≤ 480 nm

M4.W.3 Width
M4 vertical width may not be an 

even integer multiple of its 
minimum width.  

- - -

M4.W.4 Width

M4 vertical width, resulting in the 
polygon spanning an even number 
of minimum width routing tracks 

vertically, is not allowed.  

- - -

M4.W.5 Width Minimum horizontal width of M4 ≥ 44 nm

M4.S.1 Spacing

Minimum vertical spacing 
between two M4 layer polygons' 

edges, regardless of the edge 
lengths and mask colors

≥ 24 nm

M4.S.2 Spacing

Minimum horizontal spacing 
between two M4 layer polygons' 

edges, regardless of the edge 
lengths and mask colors

≥ 40 nm

M4.S.3 Spacing

Minimum tip-to-tip spacing 
between two M4 layer 

polygons—that do not share a 
parallel run length—on adjacent 

tracks

≥ 40 nm

M4.S.4 Spacing

Minimum tip-to-tip spacing 
between two M4 layer 

polygons—that share a parallel run 
length—on adjacent tracks

≥ 40 nm

M4.S.5 Spacing
Minimum parallel run length of 

two M4 layer polygons on adjacent 
tracks

≥ 44 nm

M4.AUX.1 Auxiliary M4 horizontal edges must be at a 
grid of  == 24 nm

M4.AUX.2 Auxiliary

Minimum width M4 tracks must lie 
along the horizontal routing tracks. 

These tracks are located at a 
spacing equal to: 2N x minimum 

metal width + offset from the 
origin, where N ∈ Z-+.  

- - -

M4.AUX.3 Auxiliary M4 may not bend.  - - -

M4.AUX.4 Auxiliary
Outside edge of a wide M4 layer 
polygon may not touch a routing 

track edge.  
- - -



Other CAD Tool Support
• Cadence Virtuoso

– Schematic and layout
• SPICE models (BSIM-CMG) from 

netlister
• Mentor Calibre DRC, LVS, PEX 

(xACT3D)
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Download page
• See:

– http://asap.asu.edu/asap

• Downloaded by over 75 
different Universities 
so far

• Latest release
– New better library 

• ~50 cells improved
• ~70 cells added

– TechLEF
• Almost no DRCs at >80% 

utilization
– Sample Innovus .tcl
– xACT3D extraction
– Minor DRC changes
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Summary
• ASAP7 PDK and 7.5-track cell libraries for N7

– Realistic assumptions for N7
• Libraries allow credible APR for research/coursework

– Full Cadence Innovus APR collateral for routing and power distribution
– Workaround for routing at advanced geometry with academic license 

described
• Features to reduce cell size, parasitics, leakage, and address 

reliability described
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